Curated by THEOUTPOST
On Thu, 24 Oct, 8:09 AM UTC
4 Sources
[1]
AI Predicts Chemical Compounds for Dual-Target Medications - Neuroscience News
Summary: Researchers have developed an AI system that predicts chemical compounds capable of targeting two proteins simultaneously, potentially creating more effective medications. By training the AI with a chemical language model, it was able to generate novel molecular structures with dual-target activity, an essential feature for treating complex diseases like cancer. The AI produced compounds that might not be immediately considered by chemists, offering new opportunities for drug design. This approach could help identify innovative treatment options with fewer side effects. Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of ChatGPT for molecules. Following a training phase, the AI was able to exactly reproduce the chemical structures of compounds with known dual-target activity that may be particularly effective medications. The study has now been published in Cell Reports Physical Science. Anyone who wants to delight their granny with a poem on her 90th birthday doesn't need to be a poet nowadays: A short prompt in ChatGPT is all it takes, and within a few seconds the AI spits out a long list of words that rhyme with the birthday girl's name. It can even produce a sonnet to go with it if you like. Researchers at the University of Bonn have implemented a similar model in their study - known as a chemical language model. This does not, however, produce rhymes. Instead, the AI displays the structural formulas of chemical compounds that may have a particularly desirable property: They are able to bind to two different target proteins. In the organism, this means, for example, they can inhibit two enzymes at once. Wanted: Active ingredients with a double effect "In pharmaceutical research, these types of active compounds are highly desirable due to their polypharmacology," explains Prof. Dr. Jürgen Bajorath. The computational chemistry expert heads the AI in Life Sciences area at the Lamarr Institute for Machine Learning and Artificial Intelligence and the Life Science Informatics program at b-it (Bonn-Aachen International Center for Information Technology) at Uni Bonn. "Because compounds with desirable multi-target activity influence several intracellular processes and signaling pathways at the same time, they are often particularly effective - such as in the fight against cancer." In principle, this effect can also be achieved by co-administration of different drugs. However, there is a risk of unwanted drug-drug interactions and different compounds are also often broken down at different rates in the body, making it difficult to administer them together. Finding a molecule that specifically influences the effect of a single target protein is no easy task. Designing compounds that have a predefined double effect is even more complicated. Chemical language models may help here in the future. ChatGPT is trained with billions of pages of written text and learns to formulate sentences itself. Chemical language models work in a similar way, but only have comparably very small amounts of data available for learning. However, in principle, they are also fed with texts, such as what are known as SMILES strings, which show organic molecules and their structure as a sequence of letters and symbols. "We have now trained our chemical language model with pairs of strings," says Sanjana Srinivasan from Bajorath's research group. "One of the strings described a molecule that we know only acts against one target protein. The other represented a compound that, in addition to this protein, also influences a second target protein." AI learns chemical connections The model was fed with more than 70,000 of these pairs. This allowed it to acquire an implicit knowledge of how the normal active compounds differed from those with the double effect. "When we then fed it with a compound against a target protein, it suggested molecules on this basis that would act not only against this protein but also against another," explains Bajorath. The training compounds with the double effect often target proteins that are similar and thus perform a similar function in the body. In pharmaceutical research, however, people are also looking for active ingredients that influence completely different classes of enzymes or receptors. To prepare the AI for this task, fine-tuning took place after the general learning phase. The researchers used several dozen special training pairs to teach the algorithm which different classes of proteins the suggested compounds should target. This is a bit like instructing ChatGPT not to create a sonnet this time, but instead a limerick. After the fine-tuning, the model actually spat out molecules that have already been shown to act against the desired combinations of target proteins. "This shows that the process works," says Bajorath. In his opinion, however, the strength of the approach is not that new compounds exceeding the effect of available pharmaceuticals can immediately be found. "It is more interesting, from my point of view, that the AI often suggests chemical structures that most chemists would not even think of right away," he explains. "To a certain extent, it triggers 'out of the box' ideas and comes up with original solutions that can lead to new design hypotheses and approaches." Participating institutions and funding: The study was conducted at the University of Bonn at the Lamarr Institute and b-it. Generation of Dual-Target Compounds Using a Transformer Chemical Language Model Compounds with defined multi-target activity are candidates for the treatment of multi-factorial diseases. Such compounds are mostly discovered experimentally. Designing compounds with the desired activity against two targets is typically attempted by pharmacophore fusion. In addition, machine learning models can be derived for multi-target prediction of compounds or computational target profiling. Here, we introduce transformer-based chemical language model variants for the generative design of dual-target compounds. Alternative models were pre-trained by learning mappings of single- to dual-target compounds of increasing similarity. Different models were optimized for generating compounds with activity against pairs of functionally unrelated targets using a new cross-fine-tuning approach. Control models confirmed that pre-trained and fine-tuned models learned the chemical space of dual-target compounds. The final models were found to exactly reproduce known dual-target compounds excluded from model derivation. In addition, many structural analogs of such compounds were generated, further supporting the validity of the methodology.
[2]
New chemical language model can predict dual-target drug candidates
University of BonnOct 23 2024 Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of ChatGPT for molecules. Following a training phase, the AI was able to exactly reproduce the chemical structures of compounds with known dual-target activity that may be particularly effective medications. The study has now been published in Cell Reports Physical Science. Do not publish before Wednesday, October 23rd, 5:00 pm CEST! Anyone who wants to delight their granny with a poem on her 90th birthday doesn't need to be a poet nowadays: A short prompt in ChatGPT is all it takes, and within a few seconds the AI spits out a long list of words that rhyme with the birthday girl's name. It can even produce a sonnet to go with it if you like. Researchers at the University of Bonn have implemented a similar model in their study - known as a chemical language model. This does not, however, produce rhymes. Instead, the AI displays the structural formulas of chemical compounds that may have a particularly desirable property: They are able to bind to two different target proteins. In the organism, this means, for example, they can inhibit two enzymes at once. Wanted: Active ingredients with a double effect In pharmaceutical research, these types of active compounds are highly desirable due to their polypharmacology." Prof. Dr. Jürgen Bajorath The computational chemistry expert heads the AI in Life Sciences area at the Lamarr Institute for Machine Learning and Artificial Intelligence and the Life Science Informatics program at b-it (Bonn-Aachen International Center for Information Technology) at Uni Bonn. "Because compounds with desirable multi-target activity influence several intracellular processes and signaling pathways at the same time, they are often particularly effective - such as in the fight against cancer." In principle, this effect can also be achieved by co-administration of different drugs. However, there is a risk of unwanted drug-drug interactions and different compounds are also often broken down at different rates in the body, making it difficult to administer them together. Finding a molecule that specifically influences the effect of a single target protein is no easy task. Designing compounds that have a predefined double effect is even more complicated. Chemical language models may help here in the future. ChatGPT is trained with billions of pages of written text and learns to formulate sentences itself. Chemical language models work in a similar way, but only have comparably very small amounts of data available for learning. However, in principle, they are also fed with texts, such as what are known as SMILES strings, which show organic molecules and their structure as a sequence of letters and symbols. "We have now trained our chemical language model with pairs of strings," says Sanjana Srinivasan from Bajorath's research group. "One of the strings described a molecule that we know only acts against one target protein. The other represented a compound that, in addition to this protein, also influences a second target protein." AI learns chemical connections The model was fed with more than 70,000 of these pairs. This allowed it to acquire an implicit knowledge of how the normal active compounds differed from those with the double effect. "When we then fed it with a compound against a target protein, it suggested molecules on this basis that would act not only against this protein but also against another," explains Bajorath. The training compounds with the double effect often target proteins that are similar and thus perform a similar function in the body. In pharmaceutical research, however, people are also looking for active ingredients that influence completely different classes of enzymes or receptors. To prepare the AI for this task, fine-tuning took place after the general learning phase. The researchers used several dozen special training pairs to teach the algorithm which different classes of proteins the suggested compounds should target. This is a bit like instructing ChatGPT not to create a sonnet this time, but instead a limerick. After the fine-tuning, the model actually spat out molecules that have already been shown to act against the desired combinations of target proteins. "This shows that the process works," says Bajorath. In his opinion, however, the strength of the approach is not that new compounds exceeding the effect of available pharmaceuticals can immediately be found. "It is more interesting, from my point of view, that the AI often suggests chemical structures that most chemists would not even think of right away," he explains. "To a certain extent, it triggers 'out of the box' ideas and comes up with original solutions that can lead to new design hypotheses and approaches." Participating institutions and funding: The study was conducted at the University of Bonn at the Lamarr Institute and b-it. University of Bonn Journal reference: Srinivasan, S & Bajorath, J., (2024) Generation of Dual-Target Compounds Using a Transformer Chemical Language Model. Cell Reports Physical Science. doi.org/10.1016/j.xcrp.2024.102255.
[3]
A 'chemical ChatGPT' for new medications
Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model -- a kind of ChatGPT for molecules. Following a training phase, the AI was able to exactly reproduce the chemical structures of compounds with known dual-target activity that may be particularly effective medications. The study has now been published in Cell Reports Physical Science. Anyone who wants to delight their granny with a poem on her 90th birthday doesn't need to be a poet nowadays: A short prompt in ChatGPT is all it takes, and within a few seconds the AI spits out a long list of words that rhyme with the birthday girl's name. It can even produce a sonnet to go with it if you like. Researchers at the University of Bonn have implemented a similar model in their study -- known as a chemical language model. This does not, however, produce rhymes. Instead, the AI displays the structural formulas of chemical compounds that may have a particularly desirable property: They are able to bind to two different target proteins. In the organism, this means, for example, they can inhibit two enzymes at once. Wanted: Active ingredients with a double effect "In pharmaceutical research, these types of active compounds are highly desirable due to their polypharmacology," explains Prof. Dr. Jürgen Bajorath. The computational chemistry expert heads the AI in Life Sciences area at the Lamarr Institute for Machine Learning and Artificial Intelligence and the Life Science Informatics program at b-it (Bonn-Aachen International Center for Information Technology) at Uni Bonn. "Because compounds with desirable multi-target activity influence several intracellular processes and signaling pathways at the same time, they are often particularly effective -- such as in the fight against cancer." In principle, this effect can also be achieved by co-administration of different drugs. However, there is a risk of unwanted drug-drug interactions and different compounds are also often broken down at different rates in the body, making it difficult to administer them together. Finding a molecule that specifically influences the effect of a single target protein is no easy task. Designing compounds that have a predefined double effect is even more complicated. Chemical language models may help here in the future. ChatGPT is trained with billions of pages of written text and learns to formulate sentences itself. Chemical language models work in a similar way, but only have comparably very small amounts of data available for learning. However, in principle, they are also fed with texts, such as what are known as SMILES strings, which show organic molecules and their structure as a sequence of letters and symbols. "We have now trained our chemical language model with pairs of strings," says Sanjana Srinivasan from Bajorath's research group. "One of the strings described a molecule that we know only acts against one target protein. The other represented a compound that, in addition to this protein, also influences a second target protein." AI learns chemical connections The model was fed with more than 70,000 of these pairs. This allowed it to acquire an implicit knowledge of how the normal active compounds differed from those with the double effect. "When we then fed it with a compound against a target protein, it suggested molecules on this basis that would act not only against this protein but also against another," explains Bajorath. The training compounds with the double effect often target proteins that are similar and thus perform a similar function in the body. In pharmaceutical research, however, people are also looking for active ingredients that influence completely different classes of enzymes or receptors. To prepare the AI for this task, fine-tuning took place after the general learning phase. The researchers used several dozen special training pairs to teach the algorithm which different classes of proteins the suggested compounds should target. This is a bit like instructing ChatGPT not to create a sonnet this time, but instead a limerick. After the fine-tuning, the model actually spat out molecules that have already been shown to act against the desired combinations of target proteins. "This shows that the process works," says Bajorath. In his opinion, however, the strength of the approach is not that new compounds exceeding the effect of available pharmaceuticals can immediately be found. "It is more interesting, from my point of view, that the AI often suggests chemical structures that most chemists would not even think of right away," he explains. "To a certain extent, it triggers 'out of the box' ideas and comes up with original solutions that can lead to new design hypotheses and approaches."
[4]
A 'chemical ChatGPT' for new medications: Researchers train AI to predict potential active ingredients
Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties, deriving a chemical language model -- a kind of ChatGPT for molecules. Following a training phase, the AI was able to exactly reproduce the chemical structures of compounds with known dual-target activity that may be particularly effective medications. The study has now been published in Cell Reports Physical Science. Anyone who wants to delight their granny with a poem on her 90th birthday doesn't need to be a poet nowadays: A short prompt in ChatGPT is all it takes, and within a few seconds the AI spits out a long list of words that rhyme with the birthday girl's name. It can even produce a sonnet to go with it if you like. Researchers at the University of Bonn have implemented a similar model in their study -- known as a chemical language model. This does not, however, produce rhymes. Instead, the AI displays the structural formulas of chemical compounds that may have a particularly desirable property: They are able to bind to two different target proteins. In the organism, this means, for example, they can inhibit two enzymes at once. Wanted: Active ingredients with a double effect "In pharmaceutical research, these types of active compounds are highly desirable due to their polypharmacology," explains Prof. Dr. Jürgen Bajorath. The computational chemistry expert heads the AI in Life Sciences area at the Lamarr Institute for Machine Learning and Artificial Intelligence and the Life Science Informatics program at b-it (Bonn-Aachen International Center for Information Technology) at Uni Bonn. "Because compounds with desirable multi-target activity influence several intracellular processes and signaling pathways at the same time, they are often particularly effective -- such as in the fight against cancer." In principle, this effect can also be achieved by co-administration of different drugs. However, there is a risk of unwanted drug-drug interactions and different compounds are also often broken down at different rates in the body, making it difficult to administer them together. Finding a molecule that specifically influences the effect of a single target protein is no easy task. Designing compounds that have a predefined double effect is even more complicated. Chemical language models may help here in the future. ChatGPT is trained with billions of pages of written text and learns to formulate sentences itself. Chemical language models work in a similar way, but only have comparably very small amounts of data available for learning. However, in principle, they are also fed with texts, such as what are known as SMILES strings, which show organic molecules and their structure as a sequence of letters and symbols. "We have now trained our chemical language model with pairs of strings," says Sanjana Srinivasan from Bajorath's research group. "One of the strings described a molecule that we know only acts against one target protein. The other represented a compound that, in addition to this protein, also influences a second target protein." AI learns chemical connections The model was fed with more than 70,000 of these pairs. This allowed it to acquire an implicit knowledge of how the normal active compounds differed from those with the double effect. "When we then fed it with a compound against a target protein, it suggested molecules on this basis that would act not only against this protein but also against another," explains Bajorath. The training compounds with the double effect often target proteins that are similar and thus perform a similar function in the body. In pharmaceutical research, however, people are also looking for active ingredients that influence completely different classes of enzymes or receptors. To prepare the AI for this task, fine-tuning took place after the general learning phase. The researchers used several dozen special training pairs to teach the algorithm which different classes of proteins the suggested compounds should target. This is a bit like instructing ChatGPT not to create a sonnet this time, but instead a limerick. After the fine-tuning, the model actually spat out molecules that have already been shown to act against the desired combinations of target proteins. "This shows that the process works," says Bajorath. In his opinion, however, the strength of the approach is not that new compounds exceeding the effect of available pharmaceuticals can immediately be found. "It is more interesting, from my point of view, that the AI often suggests chemical structures that most chemists would not even think of right away," he explains. "To a certain extent, it triggers 'out of the box' ideas and comes up with original solutions that can lead to new design hypotheses and approaches."
Share
Share
Copy Link
Researchers at the University of Bonn have developed an AI system that can predict chemical compounds capable of targeting two proteins simultaneously, potentially revolutionizing drug discovery for complex diseases like cancer.
Researchers at the University of Bonn have developed an innovative AI system that predicts chemical compounds capable of targeting two proteins simultaneously, potentially revolutionizing drug discovery for complex diseases like cancer 1234. This breakthrough, published in Cell Reports Physical Science, utilizes a chemical language model akin to ChatGPT, but specifically designed for molecular structures.
In pharmaceutical research, compounds with multi-target activity are highly sought after due to their polypharmacology. Prof. Dr. Jürgen Bajorath, who heads the AI in Life Sciences area at the Lamarr Institute, explains, "Because compounds with desirable multi-target activity influence several intracellular processes and signaling pathways at the same time, they are often particularly effective - such as in the fight against cancer" 12.
While co-administration of different drugs can achieve similar effects, it often leads to unwanted drug-drug interactions and varying breakdown rates in the body. The ability to design a single compound with predefined dual effects could overcome these challenges.
The researchers trained their AI model using pairs of SMILES strings, which represent organic molecules and their structures as sequences of letters and symbols. Sanjana Srinivasan from Bajorath's research group elaborates, "One of the strings described a molecule that we know only acts against one target protein. The other represented a compound that, in addition to this protein, also influences a second target protein" 123.
The model was fed with over 70,000 of these pairs, allowing it to acquire implicit knowledge of how normal active compounds differed from those with dual effects. This training enabled the AI to suggest molecules that could act against multiple target proteins when given a compound targeting a single protein.
To enhance the AI's capabilities, the researchers implemented a fine-tuning phase. This step prepared the model to suggest compounds that could influence different classes of enzymes or receptors, broadening its application in pharmaceutical research. After fine-tuning, the model successfully produced molecules known to act against desired combinations of target proteins 1234.
While the immediate creation of new compounds surpassing existing pharmaceuticals may not be the primary outcome, the true strength of this approach lies in its ability to generate novel ideas. Bajorath notes, "It is more interesting, from my point of view, that the AI often suggests chemical structures that most chemists would not even think of right away. To a certain extent, it triggers 'out of the box' ideas and comes up with original solutions that can lead to new design hypotheses and approaches" 1234.
This AI-driven approach to drug discovery opens up new possibilities for creating more effective medications with fewer side effects. By predicting dual-target compounds, it could significantly accelerate the development of treatments for complex diseases and potentially revolutionize the pharmaceutical industry.
Reference
[1]
[2]
[3]
Researchers at Scripps Research have developed a computational approach using AI and advanced modeling to synthesize 25 variations of picrotoxanes, complex plant compounds with potential for treating brain diseases.
2 Sources
2 Sources
Researchers at SMU have developed SmartCADD, an open-source tool that combines AI, quantum mechanics, and computer-assisted drug design to significantly speed up the drug discovery process.
4 Sources
4 Sources
Researchers have developed a new AI tool that revolutionizes drug discovery for rare diseases. This innovative approach repurposes existing medications, potentially accelerating treatment options for millions of patients worldwide.
5 Sources
5 Sources
Scientists at Columbia University have developed an AI model called GET that can accurately predict gene activity in human cells, potentially revolutionizing our understanding of cellular biology and disease mechanisms.
5 Sources
5 Sources
Australian researchers develop LLM4SD, an AI tool that simulates scientists by analyzing research, generating hypotheses, and providing transparent explanations for predictions across various scientific disciplines.
2 Sources
2 Sources
The Outpost is a comprehensive collection of curated artificial intelligence software tools that cater to the needs of small business owners, bloggers, artists, musicians, entrepreneurs, marketers, writers, and researchers.
© 2025 TheOutpost.AI All rights reserved