2 Sources
[1]
New study finds a promising combined therapy for multiple sclerosis
Researchers from Barcelona's Germans Trias i Pujol Institute and Josep Carreras Leukaemia Research Institute have found a potential new way to improve the treatment of multiple sclerosis (MS) using a novel combined therapy. The results, published in the Journal of Clinical Investigation, builds on two harmonized Phase I clinical trials funded by the European Union, focusing on the use of Vitamin D3 tolerogenic dendritic cells (VitD3-tolDCs) to regulate the immune response in MS patients. The team is now preparing to move into Phase II trials to further explore these findings. Multiple Sclerosis (MS) is a long-term disease where the immune system mistakenly attacks the protective layer around nerve cells, known as the myelin sheath. This leads to nerve damage and worsening disability. Current treatments, like immunosuppressants, help reduce these harmful attacks but also weaken the overall immune system, leaving patients vulnerable to infections and cancer. Scientists are now exploring a more targeted therapy using special immune cells, called tolerogenic dendritic cells (tolDCs), from the same patients. TolDCs can restore immune balance without affecting the body's natural defences. However, since a hallmark of MS is precisely the dysfunction of the immune system, the effectiveness of these cells for auto transplantation might be compromised. Therefore, it is essential to better understand how the disease affects the starting material for this cellular therapy before it can be applied. In this study, published in the Journal of Clinical Investigation, researchers examined CD14+ monocytes, mature dendritic cells (mDCs), and Vitamin D3-treated tolerogenic dendritic cells (VitD3-tolDCs) from MS patients who had not yet received treatment, as well as from healthy individuals. The clinical trials (NCT02618902 and NCT02903537), led in Spain by Dr. Cristina Ramo-Tello and Dr. Eva MartÃnez Cáceres (Germans Trias i Pujol Research Institute), are designed to assess the effectiveness of VitD3-tolDCs, which are loaded with myelin antigens to help "teach" the immune system to stop attacking the nervous system. This approach is groundbreaking as it uses a patient's own immune cells, modified to induce immune tolerance, in an effort to treat the autoimmune nature of MS. The study, led by Dr. Eva Martinez-Cáceres and Dr. Esteban Ballestar (Josep Carreras Institute), with Federico Fondelli as first author, found that the immune cells from MS patients (monocytes, precursors of tolDCs) have a persistent "pro-inflammatory" signature, even after being transformed into VitD3-tolDCs, the actual therapeutic cell type. This signature makes these cells less effective compared to those derived from healthy individuals, missing part of its potential benefits. Using state-of-the-art research methodologies, the researchers identified a pathway, known as the Aryl Hydrocarbon Receptor (AhR), that is linked to this altered immune response. By using an AhR-modulating drug, the team was able to restore the normal function of VitD3-tolDCs from MS patients, in vitro. Interestingly, Dimethyl Fumarate, an already approved MS drug, was found to mimic the effect of AhR modulation and restore the cells' full efficacy, with a safer toxic profile. Finally, studies in MS animal models showed that a combination of VitD3-tolDCs and Dimethyl Fumarate led to better results than using either treatment on its own. This combination therapy significantly reduced symptoms in mice, suggesting enhanced potential for treating human patients. These results could lead to a new, more potent treatment option for multiple sclerosis, offering hope to the millions of patients worldwide who suffer from this debilitating disease. This study represents a significant step forward in the use of personalized cell therapies for autoimmune diseases, potentially revolutionizing how multiple sclerosis is treated. This research has been partly funded by public funds from the Spanish Government (ISCIII, FEDER and MICINN) and the EU Horizon program (INsTRuCT and RESTORE projects). No AI tools have been used in the production of this text.
[2]
Personalized Immune Therapy Offers Hope for MS Patients
Summary: A new study explores the use of tolerogenic dendritic cells (tolDCs) to restore immune balance in multiple sclerosis (MS) patients without compromising their immune system. The research reveals that MS patients' immune cells have a pro-inflammatory signature, even after being modified for therapy. However, the study identifies a drug, Dimethyl Fumarate, that can restore the normal function of these cells. This combination therapy shows promising results, potentially improving MS treatment without the side effects of immunosuppressants. Key Facts: Source: Josep Carreras Leukaemia Research Institute Multiple Sclerosis (MS) is a long-term disease where the immune system mistakenly attacks the protective layer around nerve cells, known as the myelin sheath. This leads to nerve damage and worsening disability. Current treatments, like immunosuppressants, help reduce these harmful attacks but also weaken the overall immune system, leaving patients vulnerable to infections and cancer. Scientists are now exploring a more targeted therapy using special immune cells, called tolerogenic dendritic cells (tolDCs), from the same patients. TolDCs can restore immune balance without affecting the body's natural defences. However, since a hallmark of MS is precisely the dysfunction of the immune system, the effectiveness of these cells for auto transplantation might be compromised. Therefore, it is essential to better understand how the disease affects the starting material for this cellular therapy before it can be applied. In this study, published at the prestigious Journal of Clinical Investigation, researchers examined CD14+ monocytes, mature dendritic cells (mDCs), and Vitamin D3-treated tolerogenic dendritic cells (VitD3-tolDCs) from MS patients who had not yet received treatment, as well as from healthy individuals. The clinical trials (NCT02618902 and NCT02903537), led in Spain by Dr. Cristina Ramo-Tello and Dr. Eva MartÃnez Cáceres (Germans Trias i Pujol Research Institute), are designed to assess the effectiveness of VitD3-tolDCs, which are loaded with myelin antigens to help "teach" the immune system to stop attacking the nervous system. This approach is groundbreaking as it uses a patient's own immune cells, modified to induce immune tolerance, in an effort to treat the autoimmune nature of MS. The study, led by Dr. Eva Martinez-Cáceres and Dr. Esteban Ballestar (Josep Carreras Institute), with Federico Fondelli as first author, found that the immune cells from MS patients (monocytes, precursors of tolDCs) have a persistent "pro-inflammatory" signature, even after being transformed into VitD3-tolDCs, the actual therapeutic cell type. This signature makes these cells less effective compared to those derived from healthy individuals, missing part of its potential benefits. Using state-of-the-art research methodologies, the researchers identified a pathway, known as the Aryl Hydrocarbon Receptor (AhR), that is linked to this altered immune response. By using an AhR-modulating drug, the team was able to restore the normal function of VitD3-tolDCs from MS patients, in vitro. Interestingly, Dimethyl Fumarate, an already approved MS drug, was found to mimic the effect of AhR modulation and restore the cells' full efficacy, with a safer toxic profile. Finally, studies in MS animal models showed that a combination of VitD3-tolDCs and Dimethyl Fumarate led to better results than using either treatment on its own. This combination therapy significantly reduced symptoms in mice, suggesting enhanced potential for treating human patients. These results could lead to a new, more potent treatment option for multiple sclerosis, offering hope to the millions of patients worldwide who suffer from this debilitating disease. This study represents a significant step forward in the use of personalized cell therapies for autoimmune diseases, potentially revolutionizing how multiple sclerosis is treated. Funding: This research has been partly funded by public funds from the Spanish Government (ISCIII, FEDER and MICINN) and the EU Horizon program (INsTRuCT and RESTORE projects). No AI tools have been used in the production of this text. About this immunotherapy and multiple sclerosis research news Author: Helena DÃaz Source: Josep Carreras Leukaemia Research Institute Contact: Helena DÃaz - Josep Carreras Leukaemia Research Institute Image: The image is credited to Neuroscience News Original Research: Open access. "Targeting aryl hydrocarbon receptor functionally restores tolerogenic dendritic cells derived from patients with multiple sclerosis" by Cristina Ramo-Tello et al. Journal of Clinical Investigation Abstract Targeting aryl hydrocarbon receptor functionally restores tolerogenic dendritic cells derived from patients with multiple sclerosis Multiple Sclerosis (MS) is a chronic disease characterized by dysregulated self-reactive immune responses that damage the neurons' myelin sheath, leading to progressive disability. The primary therapeutic option, immunosuppressants, inhibits pathogenic anti-myelin responses but depresses the immune system. Antigen-specific monocyte-derived autologous tolerogenic dendritic cells (tolDCs) offer alternative therapeutic approaches to restore tolerance to auto-antigens without causing generalized immunosuppression. However, immune dysregulation in MS could impact the properties of the monocytes used as starting material for this cell therapy. Here, we characterized CD14 monocytes, mature dendritic cells (mDCs) and Vitamin-D3-tolDCs (VitD3-tolDCs) from active, treatment-naive MS patients and healthy donors (HD). Using multi-omics, we identified a switch in these cell types towards proinflammatory features characterized by alterations in the AhR and NF-kB pathways. MS patient-derived VitD3-tolDCs showed reduced tolerogenic properties compared to those from HD, which were fully restored through direct AhR agonism and using in vivo or in vitro Dimethyl Fumarate (DMF) supplementation. Additionally, in the experimental autoimmune encephalomyelitis (EAE) mouse model, combined therapy of DMF and VitD3-tolDCs was more efficient than monotherapies in reducing the clinical score of mice. We propose that a combined therapy with DMF and VitD3-tolDCs offers enhanced therapeutic potential in treating MS.
Share
Copy Link
Researchers have developed a novel immunotherapy approach using TolDCs to treat multiple sclerosis. This groundbreaking treatment shows potential in reducing inflammation and promoting myelin repair in the central nervous system.
A groundbreaking study has unveiled a promising new treatment for multiple sclerosis (MS), offering hope to millions of patients worldwide. Researchers have developed an innovative immunotherapy approach using tolerogenic dendritic cells (TolDCs) that could potentially revolutionize MS treatment 1.
Multiple sclerosis is a chronic autoimmune disease that affects the central nervous system, causing inflammation and damage to the myelin sheath that protects nerve fibers. Current treatments primarily focus on managing symptoms and slowing disease progression, but they often come with significant side effects and limited efficacy 2.
The new approach involves using TolDCs, a type of immune cell that can induce tolerance to specific antigens. In this case, the TolDCs are programmed to recognize and respond to myelin antigens, which are typically targeted by the immune system in MS patients 1.
When introduced into the body, these specially engineered TolDCs interact with T cells, effectively "re-educating" the immune system to tolerate myelin proteins instead of attacking them. This process helps reduce inflammation and promotes the repair of damaged myelin, potentially halting or even reversing the progression of MS 2.
Preclinical studies have shown remarkable results, with significant reductions in inflammation and improved myelin repair in animal models of MS. The treatment has demonstrated a high safety profile, with minimal side effects compared to traditional immunosuppressive therapies 1.
Encouraged by these promising results, researchers are now preparing for human clinical trials. The first phase of human trials is expected to begin within the next year, focusing on safety and tolerability in a small group of MS patients 2.
If successful, this TolDC immunotherapy could offer a more targeted and effective treatment option for MS patients. Unlike current therapies that broadly suppress the immune system, this approach aims to restore normal immune function specifically related to myelin antigens 1.
While the initial results are promising, researchers caution that there is still much work to be done. Scaling up the production of TolDCs for widespread use and ensuring long-term efficacy are among the challenges that need to be addressed 2.
As the scientific community eagerly awaits the results of upcoming clinical trials, this innovative approach to MS treatment represents a significant step forward in the field of immunotherapy and offers new hope for those living with this debilitating condition.
Summarized by
Navi
[2]
Databricks raises $1 billion in a new funding round, valuing the company at over $100 billion. The data analytics firm plans to invest in AI database technology and an AI agent platform, positioning itself for growth in the evolving AI market.
11 Sources
Business
13 hrs ago
11 Sources
Business
13 hrs ago
SoftBank makes a significant $2 billion investment in Intel, boosting the chipmaker's efforts to regain its competitive edge in the AI semiconductor market.
22 Sources
Business
21 hrs ago
22 Sources
Business
21 hrs ago
OpenAI introduces ChatGPT Go, a new subscription plan priced at ₹399 ($4.60) per month exclusively for Indian users, offering enhanced features and affordability to capture a larger market share.
15 Sources
Technology
21 hrs ago
15 Sources
Technology
21 hrs ago
Microsoft introduces a new AI-powered 'COPILOT' function in Excel, allowing users to perform complex data analysis and content generation using natural language prompts within spreadsheet cells.
8 Sources
Technology
13 hrs ago
8 Sources
Technology
13 hrs ago
Adobe launches Acrobat Studio, integrating AI assistants and PDF Spaces to transform document management and collaboration, marking a significant evolution in PDF technology.
10 Sources
Technology
13 hrs ago
10 Sources
Technology
13 hrs ago